Vol. 13 No. 1 (2021)
Review

Vulnerability of alveolar bone cortices after orthodontic movements: Literature Review

Carla Cob Castro
Bio
Mariana Ruiz Villalobos
Bio
María Jesús Wattson Gómez
Bio
Andrea López Soto
Universidad Latinoamericana de Ciencia y Tecnología
Bio

Published 2021-12-20

Keywords

  • Alveolar Bone Losses,
  • Tooth Movements,
  • Orthodontic

How to Cite

Cob Castro, C., Ruiz Villalobos, M., Wattson Gómez, M. J., & López Soto, A. (2021). Vulnerability of alveolar bone cortices after orthodontic movements: Literature Review. IDental, 13(1). Retrieved from https://revistas.ulacit.ac.cr/index.php/iDental/article/view/49

Downloads

Download data is not yet available.

Abstract

Orthodontic dental movements generate a physiological process that involves the health and integrity of the periodontal tissues. By manipulating the teeth with forces and mechanics, consequences are generated in the supporting tissues, including variations in the bone level of the alveolar bone, one of the structures of the periodontium most susceptible to change. This literature review seeks to establish a pattern between the information found in investigations concerning bone thickness before and after orthodontic movements, as well as a trend in the thickness of the alveolar cortex associated with different populations, sex and type of dental and skeletal malocclusions, after analysis with CBCT tomography. When assessing changes in bones thickness after SARPE, space closure mechanics with of upper first premolars and lower second premolars, we found a non-significant reduction in bone thickness in the buccal wall, as opposed to a significant increase in bone thickness in the palatal wall. After evaluating the torque movements, a significant reduction is obtained correlated with the crowding and amount of expansion in the premolar region. When evaluating the thickness of the alveolar cortex to the type of dental malocclusion, it is evident that more research is still necessary to be able to affirm that there is a pattern in bone thickness associated with. The results obtained when analyzing other factors show great variability even when analyzing the same movement and orthodontic mechanics. The methodologies used are not presented in detail and as they are so variable and heterogeneous, they make real comparisons and conclusions impossible. Therefore, orthodontic movements not contemplated in current research remain to be explored.

References

  1. Ahn, H.-W., Moon, S. C. y Baek, S.-H. (2013). Morphometric evaluation of changes in the alveolar bone and roots of the maxillary anterior teeth before and after en masse retraction using cone-beam computed tomography. The Angle Orthodontist, 83(2), 212–221. https://doi.org/10.2319/041812-325.1
  2. Amid, R., Mirakhori, M., Safi, Y. y Kadkhodazadeh, M. Assessment of gingival biotype and facial hard/soft tissue dimensions in the maxillary anterior teeth region using cone beam computed tomography. Arch Oral Biol. 2017; 79:1-6. https://doi.org/10.1016/j.archoralbio.2017.02.021
  3. De Oliveira, M., Melo, M., Lacerda, M. y Villamarim, R. (2016). Incisor proclination and gingival recessions: Is there a relationship? Brazilian Journal of Oral Sciences. https://doi.org/10.20396/bjos.v15i2.8648780
  4. Domingo-Clerigues, M., Montiel-Company, J., Almerich-Silla, J., García-Sanz, V., Paredes-Gallardo, V., y Bellot-Arcis, C. (2019). Changes in the alveolar bone thickness of maxillary incisors after orthodontic treatment involving extractions — A systematic review and meta-analysis. Journal of Clinical and Experimental Dentistry, 0–0. https://doi.org/10.4317/jced.55434
  5. Dos Santos, J. G., Oliveira Reis Durão, A. P., de Campos Felino, A. C. y de Faria de Almeida, R. M. C. L. (2019). Analysis of the Buccal Bone Plate, Root Inclination and Alveolar Bone Dimensions in the Jawbone. A Descriptive Study Using Cone-Beam Computed Tomography. Journal of Oral and Maxillofacial Research, 10(2). https://doi.org/10.5037/jomr.2019.10204
  6. Enhos S., 1, I. V. (2012). Dehiscence and fenestration in skeletal Class I, II, and III malocclusions assessed with cone-beam computed tomography. The Angle Orthodontist, 67- 74. https://doi.org/10.2319/040811-250.1
  7. Farahamnd, A., Sarlati, F., Eslami, S., Ghassemian, M., Youssefi, N. y Jafarzadeh Esfahani, B. (2017). Evaluation of Impacting Factors on Facial Bone Thickness in the Anterior Maxillary Region. Journal of Craniofacial Surgery, 28(3), 700–705. https://doi.org/10.1097/scs.0000000000003643
  8. Fu, J.-H., Yeh, C.-Y., Chan, H.-L., Tatarakis, N., Leong, D. J. M. y Wang, H.-L. (2010). Tissue Biotype and Its Relation to the Underlying Bone Morphology. Journal of Periodontology, 81(4), 569–574. https://doi.org/10.1902/jop.2009.090591
  9. Ghassemian, M., Nowzari, H., Lajolo, C., Verdugo, F., Pirronti, T. y D’Addona, A. (2012). The Thickness of Facial Alveolar Bone Overlying Healthy Maxillary Anterior Teeth. Journal of Periodontology, 83(2), 187–197. doi:10.1902/jop.2011.110172
  10. Gorbunkova, A., Pagni, G., Brizhak, A., Farronato, G. y Rasperini, G. (2016). Impact of OrthodonticTreatment on Periodontal Tissues: A Narrative Review of Multidisciplinary Literature. International Journal of Dentistry, 1(9). https://doi.org/10.1155/2016/4723589
  11. Hu, X., Huang, X. y Gu, Y. (2020). Assessment of buccal and lingual alveolar bone thickness and buccolingual inclination of maxillary posterior teeth in patients with severe skeletal Class III malocclusion with mandibular asymmetry. American Journal of Orthodontics and Dentofacial Orthopedics, 157(4), 503–515. https://doi.org/10.1016/j.ajodo.2019.04.036
  12. Krishnan, V. y Davidovitch, Z. (2006). Cellular, molecular, and tissue-level reactions to orthodontic force. American Journal of Orthodontics and Dentofacial Orthopedics, 129(4), 469.e1– 469.e32. https://doi.org/10.1016/j.ajodo.2005.10.007
  13. Lablonde, B., Vich, M. L., Edwards, P., Kula, K. y Ghoneima, A. (2017). Three dimensional evaluation of alveolar bone changes in response to different rapid palatal expansion activation rates. Dental Press Journal of Orthodontics, 22(1), 89–97. https://doi.org/10.1590/2177-6709.22.1.089-097.oar
  14. Lee, J.-E., Jung, C. Y., Kim, Y., Kook, Y.-A., Ko, Y. y Park, J.-B. (2019). Analysis of Alveolar Bone Morphology of the Maxillary Central and Lateral Incisors with Normal Occlusion. Medicina, 55(9), 565. https://doi.org/10.3390/medicina55090565
  15. Lessa, A., Ferreira, P., Dantas, L., de Castellucci, M., Sampaio, F. y Rocha, I. (2020). Tomographic evaluation of buccal bone in different skeletal patterns and incisors inclination. Oral Radiology,
  16. Lund, H., Gröndahl, K. y Gröndahl, H.-G. (2010). Cone Beam Computed Tomography for Assessment of Root Length and Marginal Bone Level during Orthodontic Treatment. The Angle Orthodontist, 80(3), 466–473. https://doi.org/10.2319/072909-427.1
  17. Mandelaris, G. A., Neiva, R. y Chambrone, L. (2017). Cone-Beam Computed Tomography and Interdisciplinary Dentofacial Therapy: An American Academy of Periodontology Best Evidence Review Focusing on Risk Assessment of the Dentoalveolar Bone Changes Influenced by Tooth Movement. Journal of Periodontology, 88(10), 960–977. https://doi.org/10.1902/jop.2017.160781
  18. Misch CE. (2008) Contemporary Implant Dentistry. 3rd ed. St. Louis, MO: Mosby Inc;
  19. Monje, A., Chan, H.-L., Galindo-Moreno, P., Elnayef, B., Suarez-Lopez del Amo, F., Wang, F. y Wang, H.-L. (2015). Alveolar Bone Architecture: A Systematic Review and Meta-Analysis. Journal of Periodontology, 86(11), 1231–1248. https://doi.org/10.1902/jop.2015.150263
  20. Morad, G., Behnia, H., Motamedian, S. R., Shahab, S., Gholamin, P., Khosraviani, K., Nowzari, H. y Khojasteh, A. (2014). Thickness of Labial Alveolar Bone Overlying Healthy Maxillary and Mandibular Anterior Teeth. The Journal of Craniofacial Surgery, 25(6), 1985– 1991. https://doi.org/10.1097/scs.0000000000001022
  21. Nahm, K.-Y., Kang, J.-H., Moon, S.-C., Choi, Y.-S., Kook, Y.-A., Kim, S.-H. y Huang, J. (2012). Alveolar bone loss around incisors in Class I bidentoalveolar protrusion patients: a retrospective three- dimensional cone beam CT study. Dentomaxillofacial Radiology, 41(6), 481–488. https://doi.org/10.1259/dmfr/30845402
  22. Nowzari, H., Molayem, S., Chiu, C. H. K. y Rich, S. K. (2010). Cone Beam Computed Tomographic Measurement of Maxillary Central Incisors to Determine Prevalence of Facial Alveolar Bone Width ≥2 mm. Clinical Implant Dentistry and Related Research, 14(4), 595–602. https://doi.org/10.1111/j.1708- 8208.2010.00287.x
  23. Ohiomoba H., Sonis A., Yansane. y Friedland B. (2017). Quantitative evaluation of maxillary alveolar cortical bone thickness and density using computed tomography imaging. American Journal of Orthodontics and Dentofacial Orthopedics, 82-91. https://doi.org/10.1016/j.ajodo.2016.05.015
  24. Park, J.-H., Hong, J.-Y., Ahn, H.-W. y Kim, S.-J. (2018). Correlation between periodontal soft tissue and hard tissue surrounding incisors in skeletal Class III patients. The Angle Orthodontist, 88(1), 91–99. https://doi.org/10.2319/060117-367.1
  25. Phermsang-Ngarm, P. y Charoemratrote, C. (2018). Tooth and bone changes after initial anterior dental alignment using preformed vs customized nickel titanium archwires in adults: A randomized clinical trial. Angle Orthodontist, 88(4), 425–434. https://doi.org/10.2319/090317-589.1
  26. Rojo-Sanchis, J., Viña-Almunia, J., Peñarrocha-Oltra, D. y Peñarrocha-Diago, M. (2017). Facial Alveolar Bone Width at the First and Second Maxillary Premolars in Healthy Patients: A Cone Beam Computed Tomography Study. Journal of Oral Implantology, 43(4), 261–265. https://doi.org/10.1563/aaidjoi-d-16-00195
  27. Rossell, Joan. (2017). Grosor vestibular gingival y óseo de los incisivos superiores e inferiores en biotipos finos y gruesos. Tesis doctoral UIC Barcelona.
  28. Sarikaya, S., Haydar, B., Ciǧer, S. y Ariyürek, M. (2002). Changes in alveolar bone thickness due to retraction of anterior teeth. American Journal of Orthodontics and Dentofacial Orthopedics, 122(1), 15–26. https://doi.org/10.1067/mod.2002.119804
  29. Schwartz, J. P., Raveli, T. B., Schwartz-Filho, H. O. y Raveli, D. B. (2016). Changes in alveolar bone support induced by the Herbst appliance: a tomographic evaluation. Dental Press Journal of Orthodontics, 21(2), 95–101. https://doi.org/10.1590/2177-6709.21.2.095-101.oar
  30. Sendyk, M., de Paiva, J. B., Abrão, J. y Rino Neto, J. (2017). Correlation between buccolingual tooth inclination and alveolar bone thickness in subjects with Class III dentofacial deformities. American Journal of Orthodontics and Dentofacial Orthopedics, 152(1), 66– 79. https://doi.org/10.1016/j.ajodo.2016.12.014
  31. Sendyk, M., Sigal, D., Mendes, C. Batista de Paiva, J. y Rino, J. (2019). Effect of orthodontic treatment on alveolar bone thickness in adults: A systematic review. Dental Press Journal of Orthodontics. 80(4), 34-45. https://doi.org/10.1590/2177-6709.24.4.034-045.oar
  32. Sheng, Y., Guo, H.-M., Bai, Y.-X. y Li, S. (2019). Dehiscence and fenestration in anterior teeth. Journal of Orofacial Orthopedics / Fortschritte Der Kieferorthopädie. https://doi.org/10.1007/s00056-019-00196-4
  33. Son, E. J., Kim, S. J., Hong, C., Chan, V., Sim, H. Y., Ji, S., Hong, S.Y., Baik, U-B., Shin, J. W., Kim, Y. H. y Chae, H. S. (2020). A study on the morphologic change of palatal alveolar bone shape after intrusion and retraction of maxillary incisors. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020- 71115-6
  34. Sun, B., Tang, J., Xiao, P. y Ding, Y. (2015). Presurgical orthodontic decompensation alters alveolar bone condition around mandibular incisors in adults with skeletal Class III malocclusion. International journal of clinical and experimental medicine. 8(8). P12866-12873
  35. Tepedino, M., Franchi, L., Fabbro, O. y Chimenti, C. (2018). Post-orthodontic lower incisor inclination and gingival recession—a systematic review. Progress in Orthodontics, 19(1). https://doi.org/10.1186/s40510- 018-0212-6
  36. Thongudomporn, U., Charoemratrote, C. y Jearapongpakorn, S. (2015). Changes of anterior maxillary alveolar bone thickness following incisor proclination and e xtrusion. The Angle Orthodontist, 85(4), 549–554. https://doi.org/10.2319/051614-352.1
  37. Xu, X., Wu, J.-Q., Jiang, J.-H., Liang, C., Wang, X.-E., Jing, W.-D. y Xu, L. (2020). Periodontal Effect of Periodontally Accelerated Osteogenic Orthodontics in Skeletal Angl e Class III:A Nonrandomized, Controlled Trial. The International Journal of Periodontics & Restora tive Dentistry, 40(4), e169–e177. https://doi.org/10.11607/prd.4545