Reducing Carbon Footprint from Traffic Congestion in the Metropolitan Area of San Jose, Costa Rica
Published 2024-07-30
Keywords
- Carbon footprint,
- GHG ,
- mobilization ,
- PIMUS ,
- smart city
How to Cite
Copyright (c) 2024 Rhombus
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Downloads
Abstract
The purpose of this research is to establish the relationship between greenhouse gas production and congestion in the metropolitan area of Costa Rica. To achieve this, a methodology inspired by the 2018 State of the Nation Report from the State of the Nation Program was employed. A digital survey was administered to a sample of approximately 6,000 individuals, specifically university students aged 18-24 residing in the Greater Metropolitan Area. Tools such as Microsoft Excel, Google Maps, My Maps, Komoot, Datawrapper, and Microsoft Forms were used for analysis. It is important to acknowledge the limitations of this approach, as the sample was non-randomly selected, limiting heterogeneity. Additionally, the availability of email addresses within the sample population posed a challenge. Nevertheless, the findings of this study could have a significant impact on the way national greenhouse gas inventories are assessed, promoting their use as a trend indicator based on the Metropolitan Area rather than a per capita indicator. Furthermore, the geographical segmentation offers a new approach that can guide specific actions by the Ministry of Environment and Energy to address the contribution of different regions to the carbon-neutral indicator.
References
- Hương, T., Lam, T. & Vuong, H. (2023). Smart Cities in the World, Value Creation, and Suggestion for Vietnam.
- International Institute for Management Development. (2023). IMD Smart City Index Report 2023. https://www.imd.org/news/competitiveness/asian-and-european-citizens-see-their-cities-as-thesmartest-finds-2023-imd-smart-city- index/
- Kitpo, N., Kugai, Y., Inoue., M, Yokemura, T., Satomura, S. (2019, 11-13 de enero). Internet of Things for Greenhouse Monitoring System Using Deep Learning and Bot Notification Services. [Sesión de conferencia] 1-4. IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, Estados Unidos. https://doi.org/10.1109/ICCE.2019.8661999
- Lanvin, B. (2023). Asian and European citizens see their cities as the ‘smartest’, finds 2023 IMD Smart City Index. IMD. https://www.imd.org/news/competitiveness/asian-and-european-citizenssee-their-cities-as-the-smartest-finds-2023-imd-smart-city-index/
- Liu, K., Meng, C., Tan, J., Zhang, G. (2023). Do smart cities promote a green economy? Evidence from a quasi-experiment of 253 cities in China, Environmental Impact Assessment Review, 99. https://doi.org/10.1016/j.eiar.2022.107009(https://www.sciencedirect.com/science/article/pii/S019592552200275X
- Machado, D., Qu, Y., Cervantes, M. (2019). Innovation policies for sustainable development: Low-carbon energy and smart-city initiatives. OECD Science, Technology and Industry Policy Papers, (80). https://doi.org/10.1787/23074957
- Naciones Unidas. (12 de diciembre del 2015). Acuerdo de París de la Convención Marco de las Naciones Unidas sobre el Cambio Climático (UNFCCC). https://www.refworld.org.es/docid/602021b64.html
- NOAA National Centers for Environmental Information (2023). Monthly Global Climate Report for Annual 2022. https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202213/supplemental/page-6.
- Pérez, F., Velásquez, G., Fernández, G., Dorao, V. (2015) Movilidad inteligente. Economía industrial.(395): 111-122. https://www.ospi.es/export/sites/ospi/documents/documentos/Economia-Industrial.pdf
- Pishue, B. (2023). 2022 INRIX global traffic scorecard. Annual Report. Kirkland,WA, USA.https://lesvoitures.fr/wp-content/uploads/2023/01/2022_INRIX_Traffic_Scorecard_Report.pdf
- Poudenx, P. (2008). The effect of transportation policies on energy consumption and greenhouse gas emission from urban passenger transportation, Transportation Research Part A: Policy and Practice, 42(6): 901-909. https://doi.org/10.1016/j.tra.2008.01.013. https://www.sciencedirect.com/science/article/pii/S0965856408000402
- Presidencia de la República. Ministerio de Comunicación. (2020). Costa Rica registra una reducción del 26% en emisiones de dióxido de carbono por la pandemia. https://www.presidencia.go.cr/comunicados/2020/08/costa-rica-registra-una-reduccion-del-26-enemisiones-de-dioxido-de-carbono-por-la-pandemia/#:~:text=Minutos%20de%20lectura,Costa%20Rica%20registra%20una%20-reducci%C3%B3n%20del%2026%25%20en%20emisiones%20de,de%20carbono%20por%20la%20pandemia&text=Informe%20del%20IN%20midi%C3%B3%20el,con%20ese%20periodo%20en%202019.
- Rona, N. (2019). Costa Rica: Programa País de Carbono Neutralidad 2.0 – Categoría Organizacional. Estudio de Caso. https://ledslac.org/wp-content/uploads/2020/05/EdC-Carbono-Neutralidad-Costa-Rica-ene20_mod.pdf
- Schirn, A. (2022). ISO/IEC 30182:2017 –Smart City Concept Model. American National Standards Institute. https://blog.ansi.org/iso-iec30182-2017-smart-city-concept-model/#
- gref.Suresh, B., Moondra, N., Tandel, B. (2019). Assessment of carbon footprint: a case study of SVNITcampus. Recent trends in civil engineering, 77, 1030-1036. http://dx.doi.org/10.1007/978-981-15-5195-6_75
- Sharifi, A., Allam, Z., Feizizadeh, B., Ghamari, H. (2021). Three Decades of Research on Smart Cities: Mapping Knowledge Structure and Trends. Sustainability, (13): 7140. https://doi.org/10.3390/su13137140
- Syed, A., Sierra-Sosa, D., Kumar, A., Elmaghraby, A. (2021). IoT in Smart Cities: A Survey of Technologies, Practices and Challenges. Smart Cities (4): 429–475. https://doi.org/10.3390/smartcities4020024
- Taha, H. Investigación de operaciones. (2017). Pearson Educación, México.
- Wade, M., Pfaeffli, M. (mayo del 2016). What is a Smart City anyways? International Institute for Management Development. https://www.imd.org/research-knowledge/technology-management/articles/what-is-a-smart-city-anyways/
- Wang, F. (2023). Does the construction of smart cities make cities green? Evidence from a quasi-naturalexperiment in China. Cities, Vol140(3). https://doi.org/10.1016/j.cities.2023.104436.)
- Wang, L., Chen, R., Sun, W., Yang, X., Li, X. (2019). Impact of High-Density Urban Built Environmenton Chronic Obstructive Pulmonary Disease: A Case Study of Jing’an District, Shanghai. Int J Environ Res Public Health. Vol 17(1): 252. doi:10.3390/ijerph17010252.
- Yi, Z., Fazhi, H., Neng, H., Yimin, Q. (2018). Parallel ant colony optimization on multi-core SIMD CPUs. Future Generation Computer Systems, Vol 79(2): 473-487. https://doi.org/10.1016/j.future.2017.09.073.https://www.sciencedirect.com/science/article/pii/S0167739X16304289